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Introduction

• Large-scale image-text datasets (e.g., LAION²) are critical for modern AI systems.
• Problem: Dataset reutilization leads to pervasive biases across models (T2I and others).
• Goal: Analyze LAION for:

‣ General representational biases (age, gender, race).
‣ Intersectional biases (e.g., age-gender, race-age).

• Why it matters:
‣ Most works focus on model bias, analyzing each model individually³.
‣ Identifying these biases early can open new routes for bias mitigation.

²Releasing Re-LAION 5B: Transparent Iteration on LAION-5B with Additional Safety Fixes. https://laion.ai/blog/relaion-5b

³Yixin Wan, Arjun Subramonian, Anaelia Ovalle, Zongyu Lin, Ashima Suvarna, Christina Chance, Hritik Bansal, Rebecca Pattichis, and Kai-Wei Chang. 2024. Survey of Bias In
Text-to-Image Generation: Definition, Evaluation, and Mitigation. https://doi.org/10.48550/arXiv.2404.01030
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Methodology

1. Dataset:
• Random sample: 500,000 URLs from

ReLAION-2B-en.
2. Tools:

• RetinaFace4: 37,000 faces detected.
• FairFace5: Automatic demographic estimation

(age, gender, race).
3. Bias Analysis:

• Representational bias through demographic
group proportions.

• Intersectional bias through the Ducher’s Z metric.

4Sefik Serengil and Alper Ozpinar. 2024. A Benchmark of Facial Recognition Pipelines and Co-Usability Performances of Modules. J. Inf. Technol. 17, 2 (2024), 95–107. https://
doi.org/10.17671/gazibtd.1399077

5Kimmo Karkkainen and Jungseock Joo. 2021. FairFace: Face Attribute Dataset for Balanced Race, Gender, and Age for Bias Measurement and Mitigation. In 2021 IEEE Winter
Conf. Appl. Comput. Vis. WACV. IEEE, Waikoloa, HI, USA, 1547–1557. https://doi.org/10.1109/WACV48630.2021.00159
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Ducher’s Z:

Z(𝑋, 𝑔, 𝑦) =

{{
{{
{{
{ 𝑝𝑔∧𝑦−𝑝𝑔𝑝𝑦

min[𝑝𝑔,𝑝𝑦]−𝑝𝑔𝑝𝑦
if 𝑝𝑔∧𝑦 − 𝑝𝑔𝑝𝑦 > 0

𝑝𝑔∧𝑦−𝑝𝑔𝑝𝑦
𝑝𝑔𝑝𝑦−max[0,𝑝𝑔+𝑝𝑦−1]

if 𝑝𝑔∧𝑦 − 𝑝𝑔𝑝𝑦 < 0
0 otherwise
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Demographic Distribution

• Age: Overrepresentation of individuals aged 20–29 (44%).
• Gender: Male bias (57% of faces).
• Race: White individuals overrepresented (55%); Southeast Asian underrepresented (1%).
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Intersectional Bias

• Race-Gender: no significative
biases found.

• Race-Age: Strong
underrepresentation of non-
White infants, middle-aged East
Asian and elderly Black and
Latino Hispanic individuals.

• Age-Gender: Middle-aged
women underrepresented, young
women overrepresented.
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Conclusion

• Findings:
‣ Severe demographic imbalances in the independent demographic categories.
‣ Bias issues at multiple intersections of demographic categories (i.e. underrepresentation

middle-aged women).
• Implications:

‣ Biases could propagate to T2I AI models trained on LAION, missrepresenting individuals and
populations.

• Limitations:
‣ Reliance on auxiliary models (RetinaFace, FairFace).
‣ Predefined demographic categories miss nuances (e.g., multiracial and gender identities).

6



Thanks for your attention!
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Thanks for your attention!

⚠ And beware of excesive dataset reutilization ⚠
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